On numerical integration of ordinary differential equations
نویسندگان
چکیده
منابع مشابه
The numerical integration of ordinary differential equations
A reliable efficient general-purpose method for automatic digital computer integration of systems of ordinary differential equations is described. The method operates with the current values of the higher derivatives of a polynomial approximating the solution. It is thoroughly stable under all circumstances, incorporates automatic starting and automatic choice and revision of elementary interva...
متن کاملMultirate Numerical Integration for Ordinary Differential Equations
Subject headings: Multirate time stepping / Local time stepping / Ordinary differential equations / Stiff differential equations / Asymptotic stability / High-order Rosenbrock methods / Partitioned Runge-Kutta methods / Mono-tonicity / TVD / Stability / Convergence. Het onderzoek dat tot dit proefschrift heeft geleid werd mede mogelijk gemaakt door een Peter Paul Peterichbeurs –verstrekt door d...
متن کاملNumerical Integration of Ordinary Differential Equations on Manifolds
This paper is concerned with the problem of developing numerical integration algorithms for differential equations that, when viewed as equations in some Euclidean space, naturally evolve on some embedded submanifold. It is desired to construct algorithms whose iterates also evolve on the same manifold. These algorithms can therefore be viewed as integrating ordinary differential equations on m...
متن کاملParallel Methods for the Numerical Integration of Ordinary Differential Equations
Abstract. In this paper we derive a class of numerical integration formulas of a parallel type for ordinary differential equations. These formulas may be used simultaneously on a set of arithmetic processors to increase the integration speed. Conditions for the convergence of such formulas are formulated. Explicit examples for two and four processor cases are derived. Results of numerical exper...
متن کاملNumerical Integration of Initial Value Problems in Ordinary Differential Equations
The approach described in the first part of this paper is extended to include diagonally implicit Runge-Kutta (DIRK) formulae. The algorithms developed are suitable for the numerical integration of stiff differential systems, and their efficiency is illustrated by means of some numerical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1962
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1962-0136519-5